
Maple FinanceSecurity Review

A Cantina Managed review by:
Christoph Michel, Lead Security Researcher
Riley Holterhus, Lead Security Researcher
Jonatas Martins, Associate Security Researcher

June 5, 2023

Contents
1 Introduction 21.1 Disclaimer . 21.2 Risk assessment . 21.2.1 Severity Classification . 2
2 Security Review Summary 3
3 Findings 43.1 High Risk . 43.1.1 Borrower can choose Loan migration arguments or perform a noop migration 43.2 Medium Risk . 43.2.1 Reentrant tokens should not be allowed by governance 43.3 Low Risk . 53.3.1 canDeploy functions can revert instead of returning false 53.3.2 Fixed-term loan manager refinancing does not check borrower is valid 53.3.3 Accepting new terms while loan is not funded leads to wrong principal transfers . . . 63.3.4 Impairments and calls cleared through refinancing does not emit events 63.3.5 Pending refinance commitments after clearing loan accounting 63.3.6 Interest rate decimal change can break external integrations 73.4 Gas Optimization . 83.4.1 For-loop optimization . 83.5 Informational . 83.5.1 Open-term loan defaults can be simplified . 83.5.2 isFactory incorrect comment . 83.5.3 Open-term loan manager functions missing isLoan validation 83.5.4 Inconsistent PRECISION between loan managers . 93.5.5 Consistent naming for lateInterestPremiumRate_ . 93.5.6 Pool's pause control is not on a per-function level . 93.5.7 PoolManager._getLoanManager(loan) does not check if loan is valid 103.5.8 Ambiguous negation function naming . 103.5.9 Open-term loan differences with documentation . 10

1

1 Introduction
1.1 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.2 Risk assessment
Severity Description
Critical Directly exploitable security vulnerabilities that need to be fixed.High Security vulnerabilities that may not be directly exploitable or may

require certain conditions in order to be exploited.All high issues should be addressed.Medium Objective in nature but are not security vulnerabilities.Should be addressed unless there is a clear reason not to.Low Subjective in nature.They are typically suggestions around best practices or readability.Code maintainers should use their own judgment as to whether to address such issues.Gas Suggestions around gas saving practicesInformational Suggestions around best practices or readability.
1.2.1 Severity Classification
The severity of security issues found during the security review is categorized based on the above table.When determining the severity one first needs to determine whether the finding is subjective or objective.All subjective findings are considered of Minor severity.
Next it is determined whether the finding can be regarded as a security vulnerability. Some findingsmight be objective improvements that need to be fixed, but do not impact the project’s security overall(Medium).
Finally, objective findings of security vulnerabilities are classified as either critical ormajor. Critical findingsshould be directly vulnerable and have a high likelihood of being exploited. Major findings on the otherhand may require specific conditions that need to be met before the vulnerability becomes exploitable.

2

2 Security Review Summary
Maple Finance is an institutional crypto-capital network built on Ethereum and Solana. Maple providesthe infrastructure for credit experts to efficiently manage and scale crypto lending businesses and con-nect capital from institutional and individual lenders to innovative, blue-chip companies. Built with bothtraditional financial institutions and decentralized finance leaders, Maple is transforming capital marketsby combining industry-standard compliance and due diligence with the frictionless lending enabled bysmart contracts and blockchain technology.
From April 24th to May 5th the Cantina team conducted a review of maple-core-v2-private on commithash d3409c29.
The reviewed code is a new release of Maple V2 that implements Open Term Loans. It also includesenhancements to global contracts to allow for greater flexibility in the allowlist, improvements to incidentresponse, and protection for deployments. Finally, it includes adjustments to Fixed Term Loan contractsto work with the new architecture.

Submodule Commit hash
fixed-term-loan-private v5.0.0-rc.1
fixed-term-loan-manager-private v3.0.0-rc.1
globals-v2-private v1.1.0-rc.1
liquidations-private v2.0.0
open-term-loan-private v1.0.0-rc.1
open-term-loan-manager-private v1.0.0-rc.1
pool-v2-private v2.0.0-rc.1
withdrawal-manager-private v1.0.0

The team identified a total of 18 issues in the following risk categories:
• Critical Risk: 0
• High Risk: 1
• Medium Risk: 1
• Low Risk: 6
• Gas Optimizations: 1
• Informational: 9

3

https://github.com/maple-labs/maple-core-v2-private
https://github.com/projectname/v2/tree/d3409c29ea7d76dd60a8cfc40245671a89b70845/
https://github.com/maple-labs/fixed-term-loan-private/tree/ddec844d765f7bd8f9c66088c257c48f2d784b55
https://github.com/maple-labs/fixed-term-loan-manager-private/tree/4823ce619064338de57f260ed671b1fe005da39d
https://github.com/maple-labs/globals-v2-private/tree/0dfa678603bb7845ed75f61fdbc9893e23a13c44
https://github.com/maple-labs/liquidations-private/tree/da0dbe9e21731880e5fd2dc4cc07061a35cf9a07
https://github.com/maple-labs/open-term-loan-private/tree/42c4ca28d74ef00a602cf69e9c1603cc975218fb
https://github.com/maple-labs/open-term-loan-manager-private/tree/80ed9e4ac5ec8af4dd7cec12f8514a28d5a3b7be
https://github.com/maple-labs/pool-v2-private/tree/9cb3e93dbc6c6657a0ebb336dee44c58de691c3e
https://github.com/maple-labs/withdrawal-manager-private/tree/25d9ff308626d00831cd15e1829e4c2ea9365a0d

3 Findings
3.1 High Risk
3.1.1 Borrower can choose Loan migration arguments or perform a noop migration
Severity: High Risk
Context: fixed-term-loan/MapleLoan, open-term-loan/MapleLoan
Description: The MapleLoan.upgrade(uint256 toVersion_, bytes calldata arguments_) function canbe called by the borrower (and the security admin). The borrower can choosemigration arguments for fu-ture migrations that are in their favor, like increasing principal or decreasing interest rates. The borrowercan also skip running themigration codebut still upgrade to the latest loan version by encoding argumentsthat would not call the fallback function on themigrator. For example, for the old MapleLoanV4Migratorthey could have chosen arguments that call encodeArguments(0), skipping the migration code in the fall-back (the proxy would still point to the new implementation code).
Recommendation: There is incentive for the borrower to choose migration arguments in theirfavor or "deny" a migration by encoding a different function than the fallback. For better control,consider removing arguments as a parameter for MapleLoans and always call IMapleProxyFactory(_fac-
tory()).upgradeInstance(toVersion_, "") without arguments. The arguments should be hardcodedin the migrator contract. Alternatively, consider restricting upgrade access to only the security admin.
Maple: Fixed in PR-61 (open-term loan) and PR-291 (fixed-term loan) by restricting upgrades to only thesecurity admin.
Cantina: Fixed.
3.2 Medium Risk
3.2.1 Reentrant tokens should not be allowed by governance
Severity: Medium Risk
Context: open-term-loan
Description: The protocol doesn't follow the checks-effects-interactions pattern and performs transfersin the middle of it. This can lead to borrowers or other untrusted third parties receiving a callback inthe middle of the execution while the contract is in an inconsistent state. These callbacks can happenwhen using funds tokens that support an ERC777-style transfer callback. While the LoanManager has somereentrancy guards, this is not enough to fully protect against all reentrancy issues that can span acrossseveral contracts (Pool, PoolManager, LoanManager, Loan) that are involved in a single call.
Examples:

• The transfer in OTLoan.makePayment happens in the middle of the function, after state updates andbefore the LoanManager.claim call. Inside LoanManager.claim the LoanManager reads the loan's stateagain:
// this value might not be the one you expect from the call, might have been changed twice in `makePayment`

already↪→

uint256 principalRemaining_ = ILoanLike(msg.sender).principal();

// Calculate the original principal to correctly account for removing `unrealizedLosses` when removing the
impairment.↪→

uint256 originalPrincipal_ = uint256(_int256(principalRemaining_) + principal_);

accountForLoanImpairmentRemoval(msg.sender, originalPrincipal);

One can break the impairment accounting this way by:
1. makePayment(principalToReturn_ = principal - 1). Get control at the transfer here
2. Reenter with makePayment(principalToReturn_ = 0).
3. claim is called and recomputes principalToReturn_ + L.principal() = 0 + 1 = 1

4. reduces loan impairment by a much smaller amount, LM keeps unrealized losses
There might be more severe issues like the pool receiving the interest and principal payments from atransfer while LoanManager's prinicipalOut is not decreased yet, resulting in an over-approximation ofpool assets.
Recommendation: Tokenswith callbacks should not be listed as funds or collateral assets by governance.

4

https://github.com/maple-labs/fixed-term-loan-private/compare/v4.0.0...v5.0.0-rc.1#diff-0b46e49d98523b369c473a237c64d4b73e344ae1fba54448a2c8898c43a0036dR77
https://github.com/maple-labs/open-term-loan-private/blob/v1.0.0-rc.1/contracts/MapleLoan.sol#L68
https://github.com/maple-labs/fixed-term-loan-private/blob/v4.0.1/contracts/MapleLoanV4Migrator.sol#L14
https://github.com/maple-labs/open-term-loan-private/pull/61
https://github.com/maple-labs/fixed-term-loan-private/pull/291
https://github.com/maple-labs/open-term-loan-private/blob/v1.0.0-rc.1/contracts/MapleLoan.sol#L99

Maple: Business said that there are no plans for a token that implements a callback, so we'll take noaction for now.
Cantina: Acknowledged.
3.3 Low Risk
3.3.1 canDeploy functions can revert instead of returning false

Severity: Low Risk
Context: globals/MapleGlobals.sol#L479
Description: If _canDeployFrom[factory_][caller_] is found to be false in the canDeploy and canDe-
ployFrom functions, there will be an additional check if factory_ is a loan manager factory and caller_ isa pool manager. However, the check for if caller_ is a pool manager assumes that caller_ is a contractthat implements a factory() function:
function _isPoolManager(address contract_) internal view returns (bool isPoolManager_) {

address factory_ = IProxyLike(contract_).factory();

isPoolManager_ = (isInstanceOf["POOL_MANAGER_FACTORY"][factory_]) &&
IProxyFactoryLike(factory_).isInstance(contract_);↪→

}

This is not the case for EOAs and other contracts, so this function will revert instead of returning false.
Recommendation: To make sure that true or false is always returned and reverts never happen, thereare two recommended options:
1. Rework the _isPoolManager function to have more checks against the factory() function revertingor not returning an address:

function _isPoolManager(address caller_) internal view returns (bool isPoolManager_) {
(bool success, bytes memory returndata) =

caller_.staticcall(abi.encodeWithSelector(IProxyLike.factory.selector));↪→

if (success && returndata.length == 32) {
uint256 decodedFactoryAsUInt_ = abi.decode(returndata, (uint256));
if (decodedFactoryAsUInt_ <= type(uint160).max) {

address factory_ = address(uint160(decodedFactoryAsUInt_));
isPoolManager_ = (isInstanceOf["POOL_MANAGER_FACTORY"][factory_]) &&

IProxyFactoryLike(factory_).isInstance(caller_);↪→

}
}

}

2. Slightly rework the deployment process so the _isPoolManager helper function is not needed. Oneway to do this would be to allow pool managers to set _canDeployFrom of the loan managers theyare about to deploy.
Maple: Acknowledged.
Cantina: Acknowledged. If future updates further use the _isPoolManager function, please keep thisbehavior in mind.
3.3.2 Fixed-term loan manager refinancing does not check borrower is valid
Severity: Low Risk
Context: fixed-term-loan-manager/LoanManager.sol#L134
Description: It is possible for a valid borrower to become invalid through the governor calling the set-
ValidBorrower function. Previously, a fixed-term loan refinancing would check the validity of the currentborrower in the _validateAndFundLoan function on the PoolManager. This check no longer takes place,which means an invalid borrower can receive funds when they previously wouldn't have been able to.This also does not match the behavior of open-term loan refinancing, which checks the validity of theborrower in the claim function when funds are being transferred.
Recommendation: Disallow sending funds to borrowers who have had their validity removed. This canbe accomplished by adding these lines to the acceptNewTerms function in the fixed-term loan manager:

5

https://github.com/maple-labs/globals-v2-private/tree/main/contracts/MapleGlobals.sol#L479
https://github.com/maple-labs/fixed-term-loan-manager-private/tree/main/contracts/LoanManager.sol#L134

if (principalIncrease_ > 0) {
+ address borrower_ = ILoanLike(loan_).borrower();
+ require(IMapleGlobalsLike(_globals()).isBorrower(borrower_), "LM:ANT:INVALID_BORROWER");

IPoolManagerLike(poolManager).requestFunds(loan_, principalIncrease_);
}

Maple: Fixed in PR-37.
Cantina: Fixed.
3.3.3 Accepting new terms while loan is not funded leads to wrong principal transfers
Severity: Low Risk
Context: open-term-loan/MapleLoan.sol#L99
Description: For open-term loans, the requested principal is stored in the principal storage variableupon initialization (instead of an extra principalRequested variable lke for fixed-term loans). This leadsto issues when refinancing a loan that hasn't been funded yet. The principal variable is still treated asif the principal was already paid to the borrower in the case of an unfunded loan. When increasing theprincipal via the refinancing terms the borrower only receives the increase, not the original principal. Ifthe principal is decreased, the borrower has to pay the difference in principal for the "loan".
Recommendation: Consider requiring dateFunded != 0 for acceptNewTerms to exclude this edge case. Ifterms need to be renegotiated before the loan is even funded, the borrower can just create a new loanwith the new terms.
Maple: Fixed in PR-62
Cantina: TheMaple teamhas decided to add dateFunded != 0 in proposeNewTerms. Since acceptNewTermscan't successfully execute before proposeNewTerms is called, this is equivalent to the proposed solution.Fixed.
3.3.4 Impairments and calls cleared through refinancing does not emit events
Severity: Low Risk
Context: open-term-loan/MapleLoan.sol#L147
Description: When the borrower accepts new terms for an open-term loan, any pending impairmentor principal call is cleared. However, this implicit clearing of the states in acceptNewTerms does not emitthe ImpairmentRemoved or CallRemoved events that would be emitted if the states were cleared via re-
moveImpairment or removeCall.
Recommendation: Consider emitting these events or be aware that any NewTermsAccepted event alsoacts as an impairment and call clear event.
Maple: Whilst we opted not to add events in the end we have added a note in both fixed-term and open-term loans to make it more clear that impairments/ calls get cleared.
Cantina: Acknowledged.
3.3.5 Pending refinance commitments after clearing loan accounting
Severity: Low Risk
Context: open-term-loan/MapleLoan.sol#L469, fixed-term-loan/MapleLoan.sol
Description: The MapleLoan._clearLoanAccounting function does not clear the refinanceCommitment.For open-term loans, the borrower can accept new terms and trigger a refinance with the old commit-ment even if the loan was closed because all principal was paid back or because it defaulted. This fails inthe LoanManager.claim function due to the isLoan(msg.sender)modifier not being valid anymore, negat-ing the impact.
POC Shows the revert in LoanManager.claim and uses as base the CallPrincipal.t.sol. To run it copy thefunction to CallPrincipalTests.
function test_acceptNewTerms_afterMakeFullPayment() external {

// Warp to exactly the payment due date
vm.warp(start + paymentInterval / 2);

uint256 principalDiff = 1e18;

// Create a call to increase the principal
bytes[] memory calls = _encodeCall(abi.encodeWithSignature("increasePrincipal(uint256)", principalDiff));

6

https://github.com/maple-labs/fixed-term-loan-manager-private/pull/37
https://github.com/maple-labs/open-term-loan-private/blob/v1.0.0-rc.1/contracts/MapleLoan.sol#L99
https://github.com/maple-labs/open-term-loan-private/pull/62
https://github.com/maple-labs/open-term-loan-private/blob/v1.0.0-rc.1/contracts/MapleLoan.sol#L147
https://github.com/maple-labs/open-term-loan-private/blob/v1.0.0-rc.1/contracts/MapleLoan.sol#L469
https://github.com/maple-labs/fixed-term-loan-private/compare/v4.0.0...v5.0.0-rc.1#diff-0b46e49d98523b369c473a237c64d4b73e344ae1fba54448a2c8898c43a0036dR668
https://github.com/maple-labs/maple-core-v2-private/blob/main/tests/integration/CallPrincipal.t.sol

uint256 deadline = block.timestamp + 10 days;

vm.prank(poolDelegate);
loanManager.proposeNewTerms(address(loan), address(openTermRefinancer), deadline, calls);

(
,
uint256 interest_,
uint256 lateInterest_,
uint256 delegateServiceFee_,
uint256 platformServiceFee_

) = loan.getPaymentBreakdown(block.timestamp);

//Get the total of interests
uint256 totalPayment = interest_ + lateInterest_ + delegateServiceFee_ + platformServiceFee_;

// Mint the borrower the principal + partial payments to make the full payment
fundsAsset.mint(borrower, totalPayment + principal);

vm.startPrank(borrower);
fundsAsset.approve(address(loan), totalPayment + principal);
//@audit 1. Borrower pays all principal before accept new terms
loan.makePayment(principal);

assertEq(loan.paymentInterval(), 0);
assertEq(loan.dateCalled(), 0);
assertEq(loan.dateImpaired(), 0);
assertEq(loan.datePaid(), 0);
assertEq(loan.paymentDueDate(), 0);
assertEq(loan.principal(), 0);

//@audit 2. Fail here because the loan is removed from LM
vm.expectRevert("LM:NOT_LOAN");
loan.acceptNewTerms(address(openTermRefinancer), deadline, calls);

vm.stopPrank();
}

function _encodeCall(bytes memory call) internal pure returns (bytes[] memory calls) {
calls = new bytes[](1);
calls[0] = call;

}

Recommendation: We still recommend properly resetting all non-essential loan storage variables like
refinanceCommitment, delegateServiceFeeRate and platformServiceFeeRate in _clearLoanAccountingas the Loan contract itself should be consistent and not rely on the LoanManager to revert if accepting newterms after the loan has been paid off.
Maple: Fixed in PR-64.
Cantina: Fixed.
3.3.6 Interest rate decimal change can break external integrations
Severity: Low Risk
Context: fixed-term-loan/MapleLoanV5Migrator.sol
Description: The MapleLoanV5Migrator migrates all interest rates from 18 decimals to 6 decimals. Thepublic getter functions for these also return the rates with the new decimals, breaking existing contractintegrations or off-chain dashboards.
Recommendation: Ensure that this change is communicated to external integrators.
Maple: We talked with business and they confirmed that no integrator is relying on querying the contractstate directly, as we offer an API/SDK.
Cantina: Acknowledged.

7

https://github.com/maple-labs/open-term-loan-private/pull/64
https://github.com/maple-labs/fixed-term-loan-private/compare/v4.0.0...v5.0.0-rc.1#diff-63ae498cc411c733e9230b8f600a96ea1b010cb795c240b7b365698dbe39b664R12

3.4 Gas Optimization
3.4.1 For-loop optimization
Severity: Gas Optimization
Context: pool/PoolManager, pool/PoolDeployer
Description: The for-loop in PoolManager#setIsLoanManager, PoolDeployer#deployPool, and
PoolDeployer#getDeploymentAddresses are the only ones not optimized in the codebase.
Recommendation: We recommend optimizing the for-loops
Maple: Fixed in PR-292, PR-68, PR-63
Cantina: Maple team decided to remove for-loop optimization for better readability in loops that don'tnecessarily need to be optimized. Fixed.
3.5 Informational
3.5.1 Open-term loan defaults can be simplified
Severity: Informational
Context: open-term-loan-manager/LoanManager.sol#L264
Description: Since open-term loans do not have collateral, the repossess/liquidation logic will only berelevant if someone sends tokens manually into the loan contract. This should never occur, and even ifit does, the governor or borrower would still be able to withdraw these tokens at any point through the
skim function.
Recommendation: Consider simplifying the liquidation/repossession logic for open-term loans. By as-suming that the loan holding tokens will almost never happen and can be dealt with externally if it does,the _distributeLiquidationFunds function can be entirely removed, and the repossess function can besimplified.
Maple: Acknowledged. It is possible that future loan types will also use the open-term loan manager, soit makes sense to keep it generic.
Cantina: Acknowledged.
3.5.2 isFactory incorrect comment
Severity: Informational
Context: globals/MapleGlobals.sol#L428
Description: The isFactory function has a comment that claims the liquidator factory checks
isFactory("LOAN_MANAGER", address(this));. However, the liquidator factory actually calls
isFactory("LOAN_MANAGER", IMapleProxied(msg.sender).factory()).
Recommendation: Update the comment to reflect that isFactory is not checking that address(this) isthe loan manager factory.
Maple: Fixed in PR-67.
Cantina: Fixed.
3.5.3 Open-term loan manager functions missing isLoan validation
Severity: Informational
Context: open-term-loan-manager/LoanManager.sol#L33
Description: The following open-term loanmanager functions do not validate their loan_ argument usingthe isLoanmodifier:

• proposeNewTerms

• rejectNewTerms

• callPrincipal

• removeCall

8

https://github.com/maple-labs/pool-v2-private/compare/v1.0.0-deployed...v2.0.0-rc.1
https://github.com/maple-labs/pool-v2-private/compare/v1.0.0-deployed...v2.0.0-rc.1
https://github.com/maple-labs/fixed-term-loan-private/pull/292
https://github.com/maple-labs/globals-v2-private/pull/68
https://github.com/maple-labs/open-term-loan-private/pull/63
https://github.com/maple-labs/open-term-loan-manager-private/tree/v1.0.0-rc.1/contracts/LoanManager.sol#L264
https://github.com/maple-labs/globals-v2-private/tree/main/contracts/MapleGlobals.sol#L428
https://github.com/maple-labs/globals-v2-private/pull/67/files
https://github.com/maple-labs/open-term-loan-manager-private/tree/v1.0.0-rc.1/contracts/LoanManager.sol#L33

This allows the pool delegate to forward a call to an arbitrary address.
Recommendation: For extra safety, add the isLoanmodifier to the four functions mentioned.
Maple: Fixed in PR-59.
Cantina: Fixed.
3.5.4 Inconsistent PRECISION between loan managers
Severity: Informational
Context: fixed-term-loan-manager/LoanManager, open-term-loan-manager/LoanManager.sol#L27
Description: The PRECISION constant variable is declared with different values in fixed-term-loan-
manager/LoanManager and open-term-loan-manager/LoanManager contracts, which could lead to issues inintegrating contracts
Recommendation: We recommend using the same value for both contract
Maple: Thanks for pointing it out. We ended up deciding not to consolidate on a single precision a fewweeks back.
Cantina: Acknowledged.
3.5.5 Consistent naming for lateInterestPremiumRate_
Severity: Informational
Context: fixed-term-loan/MapleLoan.sol#L755, fixed-term-loan/MapleLoan.sol#L782,
fixed-term-loan/MapleLoan.sol#L844

Description: The lateInterestPremium_ was renamed to lateInterestPremiumRate_ but not in _get-
LateInterest, _getPaymentBreakdown and _getRefinanceInterest.
Recommendation: Consider changing the name to lateInterestPremiumRate_ everywhere.
Maple: Fixed in PR-293
Cantina: Fixed.
3.5.6 Pool's pause control is not on a per-function level
Severity: Informational
Context: pool/PoolManager
Description: All contracts can be paused and individual functions can be unpaused through governance,except for the Pool contract. The pool contract forwards the decision to the PoolManager's canCall func-tion which performs a single pause check for all pool functions:
function canCall(bytes32 functionId_, address, bytes memory data_)

external view override returns (bool canCall_, string memory errorMessage_)
{

if (IGlobalsLike(globals()).isFunctionPaused(msg.sig)) return (false, "PM:CC:PAUSED");
// ...

}

Recommendation: If fine-grained pause control over the pool's functions is desired, consider code likethis:
if (

functionId_ == "P:redeem" ||
functionId_ == "P:withdraw" ||
functionId_ == "P:removeShares" ||
functionId_ == "P:requestRedeem" ||
functionId_ == "P:requestWithdraw"

) {
if (IGlobalsLike(globals()).isFunctionPaused(msg.sender, _convertPoolFunctionIdToSelector(functionId_))) {

return (false, "PM:CC:FN_PAUSED");
}
return (true, "");

}

9

https://github.com/maple-labs/open-term-loan-manager-private/pull/59
https://github.com/maple-labs/fixed-term-loan-manager-private/compare/v2.0.0...v3.0.0-rc.1#diff-9b873d4e88bfd1c70e007b35904e67717fdcd4713607bc7fe5786b5de85d24cfR35
https://github.com/maple-labs/open-term-loan-manager-private/tree/v1.0.0-rc.1/contracts/LoanManager.sol#L27
https://github.com/maple-labs/fixed-term-loan-private/blob/v5.0.0-rc.1/contracts/MapleLoan.sol#L755
https://github.com/maple-labs/fixed-term-loan-private/blob/v5.0.0-rc.1/contracts/MapleLoan.sol#L782
https://github.com/maple-labs/fixed-term-loan-private/blob/v5.0.0-rc.1/contracts/MapleLoan.sol#L844
https://github.com/maple-labs/fixed-term-loan-private/pull/293
https://github.com/maple-labs/pool-v2-private/compare/v1.0.0-deployed...v2.0.0-rc.1#diff-2f2a7c5f6d974c5a3866ca2d3d065a49e4fbc93bb9ee4894dec583697bb902d8R372

where _convertPoolFunctionIdToSelector(bytes32) -> bytes4 converts the 32-byte function ID to itsactual 4-byte solidity function selector.
Maple: We are aware of this issue, but we opted to not address it for this release.
Cantina: Acknowledged.
3.5.7 PoolManager._getLoanManager(loan) does not check if loan is valid
Severity: Informational
Context: pool/PoolManager
Description:While the _getLoanManager(loan) function checks that loan.lender() is a valid LoanManager,it does not verify that loan itself is a valid loan. A fake loan contract could return valid loanmanagers. Theimpact is negligible because all functions currently using _getLoanManager(loan) will call a function onthe LoanManager with the loan specified as a parameter that would revert for invalid loans.
Recommendation: Consider checking that loan itself is a valid loan by verifying that its loan.factory()is a valid OT or FT factory and then checking factory.isLoan(loan).
Maple: This issue also came up in one of our internal audits and we decided not to act upon. Like youmentioned, the impact is negligible, so we prefer not to change the code at this point.
Cantina: Acknowledged.
3.5.8 Ambiguous negation function naming
Severity: Informational
Context: pool/PoolManager, pool/PoolManager
Description: For some revert andmodifier function names it's unclear towhat clauses the "Not" negationrefers to:

• onlyIfNotConfiguredOrPoolDelegate: Here, the Not refers only to the first clause (if !configured
|| poolDelegate)

• _revertIfNotPoolDelegateOrGovernor: Here, the Not refers to both clauses (if !(poolDelegate ||
governor))

Recommendation: Consider using less ambiguous names like onlyIfPoolDelegateOrNotConfigured or
_revertIfNeitherPoolDelegateNorGovernor.
Maple: Fixed in PR-275 and PR-276.
Cantina: Fixed.
3.5.9 Open-term loan differences with documentation
Severity: Informational
Context: Open-Term-Loan Docs
Description: There are some differences between the open-term loan documentation and its code:

If PD doesn't post minimum required Cover, service and management fees are routed to thePool. - Source
They are routed to the treasury/pool.

If the loan is called by the Pool Delegate(PD), the borrower must repay the requested amount.After PD calls a loan, the borrower can either repay in full within Notice Period or allow PD todefault the loan. - Source
With the exception of the borrower accepting new loan terms, in which case the loan call is cleared andonly the old interest & fees and any potential loan decrease is paid back.

Governor/ PD can revert a loan impairment anytime. - Source
PD cannot revert loan impairments initiated by the governor.

The PoolDelegate directly callsPrincipal() with the principal amount, this then calls theLoan's callPrincipal(). No state changes occur on the LoanManager. - Source

10

https://github.com/maple-labs/pool-v2-private/compare/v1.0.0-deployed...v2.0.0-rc.1#diff-2f2a7c5f6d974c5a3866ca2d3d065a49e4fbc93bb9ee4894dec583697bb902d8R515
https://github.com/maple-labs/pool-v2-private/compare/v1.0.0-deployed...v2.0.0-rc.1#diff-2f2a7c5f6d974c5a3866ca2d3d065a49e4fbc93bb9ee4894dec583697bb902d8R64
https://github.com/maple-labs/pool-v2-private/compare/v1.0.0-deployed...v2.0.0-rc.1#diff-2f2a7c5f6d974c5a3866ca2d3d065a49e4fbc93bb9ee4894dec583697bb902d8R598
https://github.com/maple-labs/pool-v2-private/pull/275
https://github.com/maple-labs/pool-v2-private/pull/276
https://github.com/maple-labs/maple-core-v2-private/wiki/Open-Term-Loan
https://github.com/maple-labs/maple-core-v2-private/wiki/Open-Term-Loan
https://github.com/maple-labs/maple-core-v2-private/wiki/Open-Term-Loan
https://github.com/maple-labs/maple-core-v2-private/wiki/Open-Term-Loan
https://github.com/maple-labs/maple-core-v2-private/wiki/Open-Term-Loan-Manager

The PD calls callPrincipal() instead of callsPrincipal() on the LM.
Recommendation: We believe the differences in the docs are mostly due to ambiguous wording and tokeep descriptions short. Check if the differences are indeed intended and consider resolving these.
Maple: We've updated to docs with the recommendations, we'll keep this in mind as we write up thepublic facing docs as well.
Cantina: Fixed.

11

	Introduction
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	High Risk
	Borrower can choose Loan migration arguments or perform a noop migration

	Medium Risk
	Reentrant tokens should not be allowed by governance

	Low Risk
	canDeploy functions can revert instead of returning false
	Fixed-term loan manager refinancing does not check borrower is valid
	Accepting new terms while loan is not funded leads to wrong principal transfers
	Impairments and calls cleared through refinancing does not emit events
	Pending refinance commitments after clearing loan accounting
	Interest rate decimal change can break external integrations

	Gas Optimization
	For-loop optimization

	Informational
	Open-term loan defaults can be simplified
	isFactory incorrect comment
	Open-term loan manager functions missing isLoan validation
	Inconsistent PRECISION between loan managers
	Consistent naming for lateInterestPremiumRate_
	Pool's pause control is not on a per-function level
	PoolManager._getLoanManager(loan) does not check if loan is valid
	Ambiguous negation function naming
	Open-term loan differences with documentation

