
ParcelSecurity Review

Cantina Managed review by:
Gerard Persoon, Lead Security Researcher
Optimum, Lead Security Researcher
Pashov Krum, Associate Security Researcher
Christos Papakonstantinou, Junior Security Researcher
June 8, 2023

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3
3 Findings 43.1 High Risk . 43.1.1 executePayroll() can be frontrun with split transactions 43.1.2 offboard() clears all nonces . 43.1.3 More tokens can be retrieved from a safe via frontrunning 53.1.4 safeAddress not included in signatures . 53.1.5 Order of execTransactionFromGnosis() and initialBalances() is reversed 63.2 Medium Risk . 83.2.1 deadline to limit the validity of a transaction . 83.2.2 Nonce invalidation functionality is missing . 83.2.3 Several issues with strict after balances check in executePayroll() 83.2.4 ETH and tokens can get stuck . 93.2.5 Use seperate contracts for each gnosis safe . 103.2.6 Token retrieval not linked to signed transactions . 103.3 Low Risk . 113.3.1 ETH recipients can block receiving ETH . 113.3.2 Prefer two-step ownership transfer over a single-step pattern 123.3.3 Address restrictions in AllowanceModule . 123.3.4 Array packedPayoutNonces can cause out of gas errors 133.3.5 Potential out of gas in while loops . 133.3.6 Domain separator is missing security fields . 143.4 Gas Optimization . 143.4.1 Unnecessary conversions from bytes to string in the Signature contract 143.4.2 Optimize byte operation in packPayoutNonce() and getPayoutNonce() 143.4.3 Reduce the number of calls to MerkleProof.verify() 153.4.4 Expensive operation can be optimised outside of for-loop 153.4.5 Caching variables can result in gas savings . 163.4.6 Multiple payments to same recipient can be combined 163.4.7 Move code outside if and else in executePayroll() . 163.4.8 Redundant event parameters in event OrgOnboarded . 173.4.9 Extracting a storage pointer can result in a gas optimisation 173.4.10 Never updated variable can be immutable . 183.4.11 Use Solidity's custom errors to save gas . 183.4.12 Use calldata instead of memory for external function array parameters 183.4.13 Caching the domainSeparator will optimise gas . 193.5 Informational . 193.5.1 Function name removeApprover() doesn't show all functionality 193.5.2 Synchronisation of signers . 193.5.3 Use address(0) for the zero address . 203.5.4 Function _onlyOnboarded() not used everywhere . 203.5.5 Enforce minimum number of approvers . 213.5.6 Use the delete keyword instead of assigning default values 213.5.7 Events parameters order is not consistent . 213.5.8 Increase disallowlist for approvers . 223.5.9 Use a more recent Solidity version . 223.5.10 Emit threshold event on onboard . 223.5.11 Bundle arrays in executePayroll() . 233.5.12 Simplify check in removeApprover() . 233.5.13 Consider removing linked list . 243.5.14 Naming convention for interfaces is not followed . 253.5.15 Function ordering does not follow the Solidity style guide 25

1

3.5.16 offboard() doesn't delete everything . 253.5.17 Inheritance is possibly not needed in the protocol . 263.5.18 No need to use an assembly block to get the chain ID 263.5.19 Redundant code, logic, checks and misnamed variables 263.5.20 Typos, redundancies, errors and missing data in comments & NatSpec docs 27

2

1 Introduction
1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment
Severity Description
Critical Directly exploitable security vulnerabilities that need to be fixed.

High Security vulnerabilities that may not be directly exploitable or may require cer-tain conditions in order to be exploited. All high issues should be addressed.

Medium Objective in nature but are not security vulnerabilities. Should be addressedunless there is a clear reason not to.

Low Subjective in nature. They are typically suggestions around best practices orreadability. Code maintainers should use their own judgment as to whether toaddress such issues.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification
The severity of security issues found during the security review is categorized based on the above table.When determining the severity one first needs to determine whether the finding is subjective or objective.All subjective findings are considered of Minor severity.
Next it is determined whether the finding can be regarded as a security vulnerability. Some findingsmight be objective improvements that need to be fixed, but do not impact the project’s security overall(Medium).
Finally, objective findings of security vulnerabilities are classified as either critical ormajor. Critical findingsshould be directly vulnerable and have a high likelihood of being exploited. Major findings on the otherhand may require specific conditions that need to be met before the vulnerability becomes exploitable.

3

https://cantina.xyz

2 Security Review Summary
Parcel is a platform that enables DAO operators to make both one-off & bulk payouts with a user-friendlyinterface.
From February 21st to March 3rd the Cantina team conducted a review of parcel-payroll on commit hash3fa78dfb. The team identified a total of 50 issues in the following risk categories:

• Critical Risk: 0
• High Risk: 5
• Medium Risk: 6
• Low Risk: 6
• Gas Optimizations: 13
• Informational: 20

4

https://github.com/ParcelHQ/parcel-payroll
https://github.com/ParcelHQ/parcel-payroll/tree/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92

3 Findings
3.1 High Risk
3.1.1 executePayroll() can be frontrun with split transactions
Severity: High Risk
Context: PayrollManager.sol#L139-L244, AlowanceModule.sol#L56
Description: The function executePayroll() executes multiple transactions in one go, but it can be front-run to execute a subset of the transactions. Note this requires careful crafting of the parameters. Thissplitting leads to several problems:

• the retrieval from the allowance contract (execTransactionFromGnosis()) can be split into a largenumber of small transactions. This uses up the nonces in the allowance contract. As these noncesare limited to a maximum of 65535 this would finally prevent further payments;
• if a subset is executed (successfully) before the original transaction, then the original transactionwill fail and has to be rescheduled (minus the succeeded transaction). This requires gas, effort, andtime;
• if the original transaction is delayed multiple times, then the allowance time period (e.g. a month)could be passed and the allowance for that period would be forfeited (lost). This could requirecoordination efforts to fix.

function executePayroll(...) ... {
...
for (uint256 index = 0; index < paymentTokens.length; index++) {

execTransactionFromGnosis(...);
}
...

}
contract AllowanceModule is ... {

struct Allowance {
uint96 amount;
uint96 spent;
uint16 resetTimeMin;
uint32 lastResetMin;
uint16 nonce; // 16 bits so max 65535

}
}

Recommendation: Use the solution of "Token retrieval not linked to signed transactions".
Parcel: This is solved by a redesign of the executePayroll() function.
Cantina Security: Verified.
3.1.2 offboard() clears all nonces
Severity: High Risk
Context: Organizer.sol#L93-L106, Storage.sol#L17-L34
Description: The function offboard() deletes orgs[msg.sender], which also deletes packedPayout-
Nonces[]. If the same safe would ever onboard(), with (more or less) the same approvers, then allprevious transactions could be re-executed because all the nonces are reset. This could drain the safe.
struct ORG {

uint128 approverCount;
uint128 approvalsRequired;
mapping(address => address) approvers;
uint256[] packedPayoutNonces;

}
mapping(address => ORG) public orgs;

function offboard() external {
...
delete orgs[msg.sender]; // also deletes packedPayoutNonces
...

}

5

https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L139-L244
https://github.com/safe-global/safe-modules/blob/master/allowances/contracts/AlowanceModule.sol#L56
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L93-L106
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/Storage.sol#L17-L34

Recommendation: Apply one of the following solutions:
• use separate contracts for each gnosis safe (see the issue with that name) and deploy a new contractfor a new onboard();
• clear the data but set a flag to prevent onboard() again;
• don't clear the packedPayoutNonces[] and allow onboard() again;
• clear the data but keep an onboard nonce which is increased on every onboard and includes that inthe signature via validatePayrollTxHashes().

Parcel: Fixed via Proxy Pattern Changes PR 39. The function offboard() is no longer present.
Cantina Security: Verified.
3.1.3 More tokens can be retrieved from a safe via frontrunning
Severity: High Risk
Context: PayrollManager.sol#L139-L244
Description: An attacker can retrieve more tokens from the gnosis safe by frontrunning executePay-
roll() and increasing the payoutAmounts[] or adding entries with new paymentTokens[] to retrieve othertokens. There can also be duplicate transfers of the same token. Normally this is reverted in insufficientsigned transactions are available.
However combined with the issue "safeAddress not included in signatures", this allows the stealing ofETH/tokens.
function executePayroll(...) ... {

...
for (uint256 index = 0; index < paymentTokens.length; index++) {

execTransactionFromGnosis(...);
}
...
// send ETH / tokens to recepient
...
// check all ETH / Tokens are sent

}

Recommendation: Only retrieve ETH/Tokens that are linked to signed transactions. See the issue "Tokenretrieval not linked to signed transactions" for a way to do this.
Parcel: This is solved by a redesign of executePayroll().
Cantina Security: Verified.
3.1.4 safeAddress not included in signatures
Severity: High Risk
Context: PayrollManager.sol#L139-L244, PayrollManager.sol#L104-L124, Signature.sol#L39-L52
Description: The validation of signatures doesn't take into account the safeAddress (except when check-ing the number of approvals). This means signatures from the same approvers who are also involved inother organizations/sub daos/safes, could be reused. As the nonces (e.g. packPayoutNonce()) are storedin a different storage location, the nonces can be reused and thus the payment can be done again.
Combined with the issue "More tokens can be retrieved from a safe via frontrunning", this meansETH/Tokens can be stolen.

6

https://github.com/ParcelHQ/parcel-payroll/pull/39
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L139-L244
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L139-L244
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L104-L124
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/signature/Signature.sol#L39-L52

function executePayroll(...) ... {
...
validateSignatures(safeAddress, roots, signatures);
...
bytes32 leaf = encodeTransactionData(to[i],tokenAddress[i],amount[i],payoutNonce[i]);
...
if (MerkleProof.verify(proof[i][j], roots[j], leaf)) {

++approvals;
}
if (approvals >= orgs[safeAddress].approvalsRequired && ...) {

...
}
...

}
function validateSignatures(...) ... {

...
address signer = validatePayrollTxHashes(roots[i], signatures[i]);
...

}
function validatePayrollTxHashes(...) ... {

bytes32 digest = ... abi.encode(PAYROLL_TX_TYPEHASH, rootHash) ...
return digest.recover(signature);

}

Recommendation: Include the safeAddress in the signatures, for example in the following way:
function validatePayrollTxHashes(...) ... {
- bytes32 digest = ... abi.encode(PAYROLL_TX_TYPEHASH, rootHash) ...
+ bytes32 digest = ... abi.encode(PAYROLL_TX_TYPEHASH, safeAddress, rootHash) ...

return digest.recover(signature);
}

Note: The recommendation of issue "Use separate contracts for each gnosis safe" also solves this issue,but having a signed safeAddress is always safer.
Parcel: This is solved by using the Proxy Pattern.
Cantina Security: The DomainSeparator contains address(this) so signatures frommultiple Gnosis safescan no longer be mixed.
3.1.5 Order of execTransactionFromGnosis() and initialBalances() is reversed
Severity: High Risk
Context: PayrollManager.sol#L139-L244
Description: The function executePayroll() first pulls ETH/tokens and then determines initial balances.Then it transfers ETH/tokens out and checks balances again. The before and after balances can only beequal if no ETH/tokens have been transferred, which is not the intended behaviour.
The after-balance check for tokens is < which seems to be a workaround to get tests working. This waytokens that are previously stored in the contract are used and can be stolen. This is also unwanted,although normally there shouldn't be tokens left in the contract.

7

https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L139-L244

function executePayroll(...) ... {
...
for (uint256 index = 0; index < paymentTokens.length; index++) {

execTransactionFromGnosis(...);
}
for (uint256 i = 0; i < paymentTokens.length; i++) {

... initialBalances[i] = ...
}
...
// send ETH / tokens to recepient
...
for (uint256 i = 0; i < paymentTokens.length; i++) {

...
if (...) {

require(address(this).balance == initialBalances[i], ...);
} else
if (IERC20(paymentTokens[i]).balanceOf(address(this)) > initialBalances[i]) {

revert("CS018");
}

}
}

Recommendation: Strict checks are not necessary when using the recommendations for the followingissues:
• "Use separate contracts for each gnosis safe";
• "Token retrieval not linked to signed transactions";
• "ETH and tokens can get stuck".

Otherwise, determine the initial balances before execTransactionFromGnosis(). Change the tokens checkto a strict check.
So change the code to something like the following.
function executePayroll(...) ... {

...
+ for (uint256 i = 0; i < paymentTokens.length; i++) {
+ ... initialBalances[i] = ...
+ }

for (uint256 index = 0; index < paymentTokens.length; index++) {
execTransactionFromGnosis(...);

}
- for (uint256 i = 0; i < paymentTokens.length; i++) {
- ... initialBalances[i] = ...
- }

...
// send ETH / tokens to recepient
...
for (uint256 i = 0; i < paymentTokens.length; i++) {

...
if (...) {

require(address(this).balance == initialBalances[i], ...);
} else

- if (IERC20(paymentTokens[i]).balanceOf(address(this)) > initialBalances[i]) {
+ if (IERC20(paymentTokens[i]).balanceOf(address(this)) != initialBalances[i]) {

revert("CS018");
}

}
}

Parcel: This issue is made redundant by the Proxy pattern and a redesign of executePayroll().
Cantina Security: Verified.

8

3.2 Medium Risk
3.2.1 deadline to limit the validity of a transaction
Severity: Medium Risk
Context: PayrollManager.sol#L89-L96
Description: The function encodeTransactionData() hashes all the transaction data. Combined with thesigned root this transaction stays valid as long as it has not been executed. If someone has incorrectlysigned a transaction it currently can't be invalidated, see issue "Nonce invalidation functionality ismissing".It would be helpful if the transaction has validity and because invalid after some time. This is also a generalsecurity precaution. Note: this is also present in the permit function, see ERC20Permit.sol#L49-L68
function encodeTransactionData(...) ... {

return keccak256(abi.encode(to, tokenAddress, amount, payoutNonce));
}

Recommendation: Implement a deadline to limit the validity of a transaction.
Parcel: Adding an expiry date might create friction between signers while approving older / overduepayments. So we would like to get some feedback from first set of users before making a decision onadding this. A nonce invalidation function has been added.
Cantina Security: Acknowledged.
3.2.2 Nonce invalidation functionality is missing
Severity: Medium Risk
Context: PayrollManager.sol#L24
Description: The PayrollManager smart contract deals with nonces and uses them on-chain, but it doesnot have any functionality for invalidating a nonce. If there was some payroll transaction where all signa-tures and merkle roots & proofs were computed already, but for any reason (for example people foundthat the transaction was wrong) it needs to be invalidated, currently this is not possible as there is nononce invalidation possibility. If this transaction has already gone into the mempool anyone can executeit since the executePayroll function lacks access control.
Recommendation: Add a nonce invalidation functionality to the PayrollManager smart contract. Hereare a few possible ways to do it:

• the nonce is invalidated, by one signer (also has risk of DOS)
• the nonce is invalidated, by n signers (more complicated to keep track off)
• the signature of one signer for one leaf is invalidated (more complicated to keep track off)

Parcel: Any one of the approvers can invalidate the nonce, solved in PR 52.
Cantina Security: Verified.
3.2.3 Several issues with strict after balances check in executePayroll()

Severity: Medium Risk
Context: PayrollManager.sol#L139-L244
Description: The pattern to check for exact after balances in executePayroll() has some issues. Note:this assumes the fix of issue "Order of execTransactionFromGnosis() and initialBalances() is reversed"has been applied.
We see the following issues:

• if a token with a transfer fee or a rebalancing token is used, the balances will not match exactly;
• if one of the external contracts that are called (for example an ETH recipient or a callback of an ERC777token) is malicious, it could transfer some ETH or token back to the contract which would revert thecall. This could severely hinder the payments;

9

https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L89-L96
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC20Permit.sol#L49-L68
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L24
https://github.com/ParcelHQ/parcel-payroll/pull/52
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L139-L244

• the balance check doesn't protect against over- or under-payments because a front runner couldcall the function executePayroll() with updated values for paymentTokens[] and payoutAmounts[]that satisfy the end check.
function executePayroll(...) ... {

...
for (uint256 i = 0; i < paymentTokens.length; i++) {

... initialBalances[i] = ...
}
for (uint256 index = 0; index < paymentTokens.length; index++) {

execTransactionFromGnosis(...);
}
...
// send ETH / tokens to recepient
...
for (uint256 i = 0; i < paymentTokens.length; i++) {

...
if (...) {

require(address(this).balance == initialBalances[i], ...);
} else
if (IERC20(paymentTokens[i]).balanceOf(address(this)) != initialBalances[i]) {

revert("CS018");
}

}
}

Recommendation: Use the recommendations of the following issues:
• "Use separate contracts for each gnosis safe";
• "Token retrieval not linked to signed transactions";
• "ETH and tokens can get stuck".

Parcel: This has been redesigned using a proxy pattern in PR 53.
Cantina Security: Verified.
3.2.4 ETH and tokens can get stuck
Severity: Medium Risk
Context: PayrollManager.sol#L249
Description: The Organizer/PayrollManager contract can receive ETH, which is useful when receivingETH from the safe. However, ETH might also be sent here accidentally. Also, there are several ways extraETH/tokens could end up in the Organizer/PayrollManager contract:

• due to an error in the code;
• due to ETH/tokens being sent/returned to the contract. For example, when someone receives to-kens, recognizes a mistake has been made and returns the tokens;
• due to airdrops. Finally, NFTs could also end up in the contract, although less likely to occur becauseit won't happen if safetransfer is used.

The code that enables receiving ETH:
receive() external payable {}

Recommendation: Consider making a function to retrieve ETH, tokens, and possibly NFTs. The ownerthen has to decide what to do with them. If the solution of "Use separate contracts for each gnosis safe"is used, the functions could return the funds to the safe.
Parcel: Solved by moving to proxy pattern and adding function sweep(), in PR 39
Cantina Security: Verified.

10

https://github.com/ParcelHQ/parcel-payroll/pull/53
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L249
https://github.com/ParcelHQ/parcel-payroll/pull/39

3.2.5 Use seperate contracts for each gnosis safe
Severity: Medium Risk
Context: Storage.sol#L34
Description: When several DAOs use the same contract for Organizer/PayrollManager it is difficult toseparate the token flows. For a recipient who works for different daos it is difficult to see from which daothe tokens originated.
If a bad actor is also using the contract then tokens seem to originate from a bad actor, which might beflagged that way on chain explorers. The combining of token flows resembles a token mixer like tornadocash. If the USDC/ USDT of Organizer/PayrollManager would be blacklisted then all safes would have anissue.
If there are any vulnerabilities in the contract (see other issues) then funds could be mixed from differentsafes. This should be avoided if at all feasible. Also, potential users of the Parcel Payments protocol willbe more inclined to use the product if funds are guaranteed to be separated.
Additionally having separate contracts for each safe will simplify the code:

• onboarding after offboarding can be implemented in a straightforward way;
• the mapping for safes is no longer necessary, which also saves gas by not having to access it.;
• function executePayroll()doesn't have to query the initial balances, it can just return any remainingbalance;
• It is far easier to rescue stuck funds. See the issue "ETH and tokens can get stuck".

Also, it will help with the issue "Address restrictions in AllowanceModule".
Recommendation: Use a proxy pattern to deploy separate contracts for each gnosis safe.
Note: attention point is that there will be multiple instances of the Organizer/PayrollManager contractwith multiple instances of executePayroll(), with its own nonReentrantmodifier. So reentrancy betweenmultiple instances would be possible. Because everything else is separated this doesn't induce furtherrisks as far as we can see.
Parcel: Solved in PR 39.
Cantina Security: Verified.
3.2.6 Token retrieval not linked to signed transactions
Severity: Medium Risk
Context: PayrollManager.sol#L139-L244
Description: There is no check done that tokenAddress[] is one of the paymentTokens[]. So this way youcan steal tokens that happen to be left in the Organizer contract. Note: normally there should not be anytokens left in the Organizer contract. Note: it still requires that sufficient approvers have signed for thenon-standard token.
When applied to the "wrong" safe: initially ETH/tokens are transferred from the safe, which is later undonewhen it turns out no relevant signatures are added. However, in a block explorer, the failed transactionscan be seen, which can scare the safe owner.

11

https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/Storage.sol#L34
https://github.com/ParcelHQ/parcel-payroll/pull/39
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L139-L244

function executePayroll(...) ... {
...
for (uint256 index = 0; index < paymentTokens.length; index++) {

execTransactionFromGnosis(...);
}
...
if (tokenAddress[i] == address(0)) {

...
(bool sent, bytes memory data) = to[i].call{ value: amount[i] }("");

} else {
...
IERC20(tokenAddress[i]).safeTransfer(to[i], amount[i]);

}
...

}

Recommendation: Only retrieve ETH/Tokens that are linked to signed transactions.
This can be done in the following way:

• When calling executePayroll(): sort the transaction arrays (e.g. to, tokenAddress, amount, payout-
Nonce) on tokenAddress[] and to.

• Loop through all transactions:
– check the record is sorted;
– calculate the leaf and determine which transaction has sufficient approvals and which payout-
Nonce[] hasn't been used yet;

– store the valid transactions in a memory array.
• Loop over all the valid transactions:

– sum the amount[]s as long as they have the same tokenAddress[];
– if the sum > 0 then:

* retrieve the summed amount of ETH/tokens for tokenAddress[] from the gnosis safe;
* loop over all the tokens with the tokenAddress[]:

· optionally combine all the transactions with the same to;
· send the tokens to the to recipient;

* there should be no more tokens left of type tokenAddress[] as you have first summedthem.
Parcel: Solved in PR 53.
Cantina Security: Verified.
3.3 Low Risk
3.3.1 ETH recipients can block receiving ETH
Severity: Low Risk
Context: PayrollManager.sol#L139-L244
Description: The function executePayroll() does multiple ETH transfers and/or token transfers. If oneof the ETH recipients reverts (for example it's a contract that can't receive ETH) the entire function exe-
cutePayroll() is reverted and it has the be re-executed without that recipient.
A similar problem can occur when ERC777 tokens are used and the tokensReceived hook reverts.

12

https://github.com/ParcelHQ/parcel-payroll/pull/53
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L139-L244

function executePayroll(...) ... {
...
if (tokenAddress[i] == address(0)) {

...
(bool sent, bytes memory data) = to[i].call{value: amount[i]}("");
require(sent, "CS007");

} else {
...
IERC20(tokenAddress[i]).safeTransfer(to[i], amount[i]);

}
...

}

Recommendation: Consider ignoring ETH transfers that don't succeed. With regards to ERC777: thesetokens are not used frequently. If necessary, a try - catch construction can be used to ignore failures.
Alternatively, be prepared for this situation in the offline code.
Parcel: Solved in PR 55 and PR 59.
Cantina Security: Verified.
3.3.2 Prefer two-step ownership transfer over a single-step pattern
Severity: Low Risk
Context: Organizer.sol#L126-L128
Description: The Organizer smart contract inherits from Ownablewhich has a single-step ownership trans-fer pattern. Also, since the contract does not want the renounceOwnership functionality, it overrides themethod and forces it to revert on each call. Single-step ownership is not preferred because if for somereason (fat fingering ormistyping) you send thewrong address as the argument of the transferOwnershipfunction, then the owner role will be lost forever, leaving all onlyOwnermethods non-callable anymore.
Recommendation: Use Ownable2Step instead, this way you will also not need to override renounceOwn-
ership as this method does not exist in Ownable2Step.
Parcel: After refactoring to Proxy Architecture, the Proxy contracts can ONLY be owned by the org safes.The Factory contract implements Ownable2Step to secure Parcel's ability to deploy new implementations.
Cantina Security: Verified.
3.3.3 Address restrictions in AllowanceModule

Severity: Low Risk
Context: AlowanceModule.sol#L305-L311
Description: The address of the Organizer/PayrollManager has some restrictions imposed by the Al-
lowanceModule:

• uint48(address(Organizer))may not be 0;
• uint48(address(Organizer))may not be the same as another delegate contract.

This is unlikely to occur however someone might deliberately generate a conflicting gnosis safe address,and use that with addDelegate() to prevent adding the Organizer/PayrollManager contract. This wouldonly be relevant if the same Organizer/PayrollManager contract is used onmultiple chains and this attackis done before the Organizer/PayrollManager contract is deployed on a new chain.
Note: the solution for the issue "Use separate contracts for each gnosis safe" slightly enhances this issue.This probably slightly increased, however, if it occurs, then a new contract address can be generatedeasily.
Recommendation: Preferably implement the solution for the issue "Use separate contracts for eachgnosis safe".
Parcel: This is solved in PR 39.
Cantina Security: Verified. Note: the salt in function onboard() is important to solve potential conflicts.

13

https://github.com/ParcelHQ/parcel-payroll/pull/55
https://github.com/ParcelHQ/parcel-payroll/pull/59
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L126-L128
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol
https://github.com/safe-global/safe-modules/blob/master/allowances/contracts/AlowanceModule.sol#L305-L311
https://github.com/ParcelHQ/parcel-payroll/pull/39

3.3.4 Array packedPayoutNonces can cause out of gas errors
Severity: Low Risk
Context: PayrollManager.sol#L24-L49, Organizer.sol#L93-L106, Storage.sol#L17-L22
Description: If (accidentally) a high payoutNonce is used then packPayoutNonce() will increase the
orgs[safeAddress].packedPayoutNonces array which can take a lot of gas. It could also run out of gas.Additionally offboard() can also run out of gas while cleaning the array, which is done as part of delete
orgs[msg.sender].
struct ORG {

uint128 approverCount;
uint128 approvalsRequired;
mapping(address => address) approvers;
uint256[] packedPayoutNonces;

}

function packPayoutNonce(...) ... {
...
while (orgs[safeAddress].packedPayoutNonces.length <= slot) {

orgs[safeAddress].packedPayoutNonces.push(0);
}

}
function offboard() external {

...
delete orgs[msg.sender];
...

}

Recommendation: Change packedPayoutNonces from an array to a mapping. This also simplifies thecode, however, it is not easy to clean the mapping in ‘offboard(). Note: most other implementations ofthis pattern also use a mapping, for example: Uniswap SignatureTransfer.sol#L19.
struct ORG {

uint128 approverCount;
uint128 approvalsRequired;
mapping(address => address) approvers;

- uint256[] packedPayoutNonces;
+ mapping(uint256 => uint256) packedPayoutNonces;
}

Parcel: Solved in PR 57.
Cantina Security: Verified.
3.3.5 Potential out of gas in while loops
Severity: Low Risk
Context: Organizer.sol#L93-L106, ApproverManager.sol#L148-L166
Description: The while loops in offboard() and getApprovers() can run out of gas if a large number ofapprovers is added. This is unlikely to occur in practice because adding approvers is a privileged operation.
function offboard() external {

...
while (currentApprover != SENTINEL_ADDRESS) {

address nextApprover = orgs[msg.sender].approvers[currentApprover];
...
currentApprover = nextApprover;

}
}

function getApprovers(...) ... {
...
while (currentOp != SENTINEL_ADDRESS) {

...
currentOp = orgs[_safeAddress].approvers[currentOp];
...

}
}

14

https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L24-L49
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L93-L106
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/Storage.sol#L17-L22
https://github.com/Uniswap/permit2/blob/main/src/SignatureTransfer.sol#L19
https://github.com/ParcelHQ/parcel-payroll/pull/57
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L93-L106
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L148-L166

Recommendation: Consider removing the linked lists, see the issue "Consider removing linked list".
Parcel: The offboard function has been removed sincewemigrated to the Proxy architecture. The currentsetup is allowing us to get a list of approvers directly from the contract whereas if we go the graph way,we will have to consider all the add, remove and swap events on the proxy contract. Hence if there is nosecurity risk involved, we would like to keep this approvers list as a linked list for now.
Cantina Security: Acknowledged.
3.3.6 Domain separator is missing security fields
Severity: Low Risk
Context: Signature.sol#L11
Description: EIP-712 defines multiple fields for the domain separator - name, version, chainId, verify-
ingContract and salt. While chainId and verifyingContract are present, the rest are not. While the EIPrecommends including only the fields that make sense for your application, using the name and versionfields seems sensible and can also help protect and secure the protocol by isolating signatures evenmorenarrowly.
Recommendation: Add name and version fields to the domain separator to further isolate the protocol'ssignedmessages fromany other possible signedmessages. Make sure signatures fromdifferent versionsare not compatible.
Parcel: Solved in PR 61.
Cantina Security: Verified.
3.4 Gas Optimization
3.4.1 Unnecessary conversions from bytes to string in the Signature contract
Severity: Gas Optimization
Context: Signature.sol#L11, Signature.sol#L16
Description: In the Signature smart contract, the EIP712_DOMAIN_TYPEHASH and the PAYROLL_TX_TYPEHASHare calculated by hashing the encoding of their corresponding struct types using the keccak256 hashfunction. However, the strings are first converted to bytes before being hashed. Since these strings donot contain any non UTF-8 characters, this conversion is unnecessary and results in unnecessary gasconsumption.
Recommendation: It is recommended to remove the conversion from bytes to string, as it is not neededfor strings that only contain UTF-8 characters.
Parcel: Solved in PR 52.
Cantina Security: Verified.
3.4.2 Optimize byte operation in packPayoutNonce() and getPayoutNonce()

Severity: Gas Optimization
Context: PayrollManager.sol#L24-L79
Description: Both the functions packPayoutNonce() and getPayoutNonce() have the following code:
uint256 slotIndex = payoutNonce / 256;
uint256 bitIndex = payoutNonce % 256;

This can be optimized to save some gas.
Recommendation: Consider changing the code to:
-uint256 slotIndex = payoutNonce / 256;
+uint256 slotIndex = uint248(payoutNonce >> 8);
-uint256 bitIndex = payoutNonce % 256;
+uint256 bitIndex = uint8(payoutNonce);

15

https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/signature/Signature.sol#L11
https://eips.ethereum.org/EIPS/eip-712
https://github.com/ParcelHQ/parcel-payroll/pull/61
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/signature/Signature.sol#L11
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/signature/Signature.sol#L16
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/signature/Signature.sol#L5
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/signature/Signature.sol#L9
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/signature/Signature.sol#L15
https://github.com/ParcelHQ/parcel-payroll/pull/52
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L24-L79

For reference see: SignatureTransfer.sol#L142-L145.
Parcel: Solved in PR 57.
Cantina Security: Verified.
3.4.3 Reduce the number of calls to MerkleProof.verify()

Severity: Gas Optimization
Context: PayrollManager.sol#L139-L244
Description: The function executePayroll() loops through the roots to count the approvals. The
MerkleProof.verify is a relatively expensive operation. This can be optimized in a few ways.
function executePayroll(...) ... {

...
for (uint256 i = 0; i < to.length; i++) {

...
for (uint256 j = 0; j < roots.length; j++) {

if (MerkleProof.verify(proof[i][j], roots[j], leaf)) {
++approvals;

}
}
if (approvals >= ... && !getPayoutNonce(safeAddress, payoutNonce[i]) {

...
}
...

}
}

Recommendation: Consider the following optimizations:
• first, check if the PayoutNonce hasn't been used;
• break out of the loop once there are enough approvals;
• for each to, indicate which roots are relevant. This can be done via a bitmap or a list of indexnumbers for appropriate roots.

Parcel: Solved in PR 57.
Cantina Security: Verified.
3.4.4 Expensive operation can be optimised outside of for-loop
Severity: Gas Optimization
Context: Organizer.sol#L83
Description: In the for-loop of Organizer::onboard there is the following code:
orgs[safeAddress].approverCount++;

This is relatively expensive as it has to happen on each iteration. Since orgs[safeAddress].approverCounthas a value of 0 before the loop starts you can just set it once, after the for-loop.
Recommendation: Instead of
orgs[safeAddress].approverCount++;

in the for-loop just do
orgs[safeAddress].approverCount = _approvers.length;

once after the loop.
Parcel: Solved in PR 39.
Cantina Security: Verified.

16

https://github.com/Uniswap/permit2/blob/main/src/SignatureTransfer.sol#L142-L145
https://github.com/ParcelHQ/parcel-payroll/pull/57
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L139-L244
https://github.com/ParcelHQ/parcel-payroll/pull/57
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L83
https://github.com/ParcelHQ/parcel-payroll/pull/39

3.4.5 Caching variables can result in gas savings
Severity: Gas Optimization
Context: PayrollManager.sol#L188, PayrollManager.sol#L211
Description: In PayrollManager::executePayroll you can cache the to.length value in a variable, so itis not called 3 times in the start of the method and then multiple times in one of the for loops. You canalso extract orgs[safeAddress].approvalsRequired to a variable in the samemethod, otherwise, you willdo SLOAD operations in a for loop.
Recommendation: Extract variables to cache the values used.
Parcel: Solved in PR 57. The second part is solved by implementing the Proxy architecture.
Cantina Security: Verified.
3.4.6 Multiple payments to same recipient can be combined
Severity: Gas Optimization
Context: PayrollManager.sol#L139-L244
Description: The function executePayroll() can sendmultiple transactions with the same tokenAddressto the same to recipient. This costs unnecessary gas. Optimizing this could be relevant if recipients aredoing multiple tasks within the same DAO and get separate payments for each task.
Recommendation: When calling executePayroll(): sort the transaction arrays (e.g. to, tokenAddress,
amount, payoutNonce) on tokenAddress[] and to. Then sum all the payments for the same tokenAddressto the same to and transfer them in one safeTransfer(). See for further details on the algorithm in theissue "Token retrieval not linked to signed transactions".
Note: this does make the code more complicated Note: for the recipient, it is slightly more difficult toseperate and verify the incoming token amounts.
Parcel: Each payout event counts towards an invoice payment and we have future plans to extend theplatform and contracts based on these events.
Cantina Security: Acknowledged.
3.4.7 Move code outside if and else in executePayroll()

Severity: Gas Optimization
Context: PayrollManager.sol#L139-L244
Description: In function executePayroll(), a call is done to packPayoutNonce() both in an if and an elseclause, with the same parameters. This can be put before the if to simplify the code and save some gason the contract deployment.
function executePayroll(...) ... {

...
if (tokenAddress[i] == address(0)) {

packPayoutNonce(safeAddress, payoutNonce[i]);
...

} else {
packPayoutNonce(safeAddress, payoutNonce[i]);
...

}
...

}

Recommendation: Consider changing the code to:

17

https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L188
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L211
https://github.com/ParcelHQ/parcel-payroll/pull/57
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L139-L244
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L139-L244

function executePayroll(...) ... {
...

+ packPayoutNonce(safeAddress, payoutNonce[i]);
if (tokenAddress[i] == address(0)) {

- packPayoutNonce(safeAddress, payoutNonce[i]);
...

} else {
- packPayoutNonce(safeAddress, payoutNonce[i]);

...
}
...

}

Parcel: No longer relevant due to implementation of a try-catch pattern implemented in PR 52.
Cantina Security: Verified.
3.4.8 Redundant event parameters in event OrgOnboarded
Severity: Gas Optimization
Context: Organizer.sol#L15-L19
Description: The event OrgOnboarded contains both approvers and approvers2. Both are not neededbecause the function onboard() also emits an ApproverAdded for each approver.
event OrgOnboarded(

address indexed orgAddress,
address[] indexed approvers,
address[] approvers2

);

Recommendation: Consider changing the event to:
event OrgOnboarded(

address indexed orgAddress,
- address[] indexed approvers,
- address[] approvers2
);

Parcel: Solved in PR 39.
Cantina Security: Verified.
3.4.9 Extracting a storage pointer can result in a gas optimisation
Severity: Gas Optimization
Context: ApproverManager.sol#L25, ApproverManager.sol#L59, ApproverManager.sol#L92, Approver-Manager.sol#L132, ApproverManager.sol#L148, PayrollManager.sol#L38-L48, PayrollManager.sol#L68-L77, PayrollManager.sol#L117, PayrollManager.sol#L152, PayrollManager.sol#L211-L224,Organizer.sol#L44-L85, Organizer.sol#L97-L104
Description: In multiple places in the Organizer, ApproverManager and PayrollManager code there arestorage reads to the orgsmapping. Extracting a storage pointer to the mapping will result in gas savings.
Recommendation: Preferably implement the recommendation of issue "Use separate contracts for eachgnosis safe".
Alternatively extract a storage pointer like ORG storage organization = orgs[msg.sender]; in all meth-ods of ApproverManager to save gas. This could even be combined with _onlyOnboarded():
function _onlyOnboarded(address _safeAddress) internal view returns(ORG storage currentOrg) {

currentOrg = orgs[_safeAddress];
require(currentOrg.approverCount != 0,"CS009");

}

Parcel: This is no longer relevant due to the implementation of the proxy architecture.
Cantina Security: Verified.

18

https://github.com/ParcelHQ/parcel-payroll/pull/52
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L15-L19
https://github.com/ParcelHQ/parcel-payroll/pull/39
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L25
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L59
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L92
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L132
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L132
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L148
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L38-L48
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L68-L77
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L68-L77
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L117
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L152
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L211-L224
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L44-L85
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L97-L104

3.4.10 Never updated variable can be immutable

Severity: Gas Optimization
Context: Storage.sol#L25
Description: The ALLOWANCE_MODULE variable in Storage is only set in the constructor and never updated,so it can be turned into an immutable as a gas optimization, since immutables are not stored in storage.
Recommendation: Do the following change:
- address ALLOWANCE_MODULE;
+ address immutable ALLOWANCE_MODULE;

Note: this is especially helpful for proxy-based contracts: immutable can be used there as the values are"hardcoded" in the code.
Parcel: This variable has been made a constant now.
Cantina Security: Verified.
3.4.11 Use Solidity's custom errors to save gas
Severity: Gas Optimization
Context: ApproverManager.sol#L67
Description: The codebase uses require statements with strings, where the strings are sometimes somecode like CS003 while other times they are just error messages which are not consistent. Also, differentchecks use the same error codes, which shouldn't be the case. Using custom errors is much more gasefficient as you can write descriptive and proper names without paying more gas for it.
Recommendation: Replace all require statements with Solidity custom errors for better UX and gassavings.
Parcel: Solved in PR 50.
Cantina Security: Verified.
3.4.12 Use calldata instead of memory for external function array parameters
Severity: Gas Optimization
Context: PayrollManager.sol#L141-L149
Description: Using memory for an array function parameter is costly as it copies the whole array from
calldata to memory. This is especially costly in executePayroll as there aremany array parameters so eachof their elements will have to be copied, resulting in big gas waste, while that is not really needed for theapplication. Note: function validateSignatures() can also be updated to calldata once executePayrollis updated.
Recommendation: Change the memory keyword for all array parameters in executePayroll to calldata,Do the same in validateSignatures(). Make sure to not try to change the function arguments in its body(if you need that only then you can copy an array to memory).
Parcel: Those arrays cannot be marked as calldata since we are facing stack too deep error when weconvert these arguments to calldata.
Cantina Security: Acknowledged.

19

https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/Storage.sol#L25
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L67
https://github.com/ParcelHQ/parcel-payroll/pull/50
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L141-L149

3.4.13 Caching the domainSeparator will optimise gas
Severity: Gas Optimization
Context: Signature.sol#L27
Description: The current implementation of Signature::getDomainSeparator recomputes the domainseparator on each method call. It is a smart optimization to cache the value of the domain separator as itshould never change unless the chain.id changes which should be a rare occurrence. This will result ingas efficiency when validating payroll transaction hashes.
Recommendation: Cache the domain separator value and only reevaluate it when chain.id has changed.You can see an example of this is here
Parcel: Solved in PR 52.
Cantina Security: Verified.
3.5 Informational
3.5.1 Function name removeApprover() doesn't show all functionality
Severity: Informational
Context: ApproverManager.sol#L25-L84
Description: Both functions addApproverWithThreshold() and removeApprover() allow changing the
threshold. However removeApprover() doesn't show this in the name of the function.
function addApproverWithThreshold(..., uint128 threshold) ... {

...
}
function removeApprover(..., uint128 threshold) ... {

...
}

Recommendation: Consider changing removeApprover() to removeApproverWithThreshold().
Parcel: Solved in PR 40.
Cantina Security: Verified.
3.5.2 Synchronisation of signers
Severity: Informational
Context: PayrollManager.sol#L104-L124
Description: The function validateSignatures() checks all signers are different, which is important forthe security of the protocol. However, this alsomeans that only one root per signer can be used. If signersdon't synchronize their signing of roots, then finding the relevant rootsmight get complicated.
For example, assume the following situation:

• approver 1 has approved the payoutNonce 1,2,3 in root A and payoutNonce 4,5,6 in root B
• approver 2 has approved the payoutNonce 1,2,3,4,5,6 in root C

Then two calls to executePayroll() are required to do all the payouts. Note: the more approvers themore complicated this might get.
function validateSignatures(...) ... {

...
for (uint256 i = 0; i < roots.length; i++) {

address signer = validatePayrollTxHashes(roots[i], signatures[i]);
// Check if the signer is an approver & is different from the current approver
require(... , signer > currentApprover, "CS014");
...

}
}

20

https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/signature/Signature.sol#L27
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/EIP712.sol#L84-L94
https://github.com/ParcelHQ/parcel-payroll/pull/52
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L25-L84
https://github.com/ParcelHQ/parcel-payroll/pull/40
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L104-L124

Recommendation: If this problem is indeed relevant then the following solution can be used: Have onehash tree per approver that is expanded with every payoutNonce. This way all previously signed payout-
Nonces are always accessible. This probably requires a different hash approach, like this one: axic/eth2-deposit-contract/blob/master/deposit_contract.sol#L101 .
Parcel: We are generating the trees and roots off-chain when the approvers approve payouts. We areplanning to expand trees with every additional approval for an epoch(month) so that when it's time forexecution, we will only have one root per approver.
Cantina Security: Acknowledged.
3.5.3 Use address(0) for the zero address
Severity: Informational
Context: PayrollManager.sol#L268
Description: In PayrollManager:: execTransactionFromGnosis one of the arguments of
executeAllowanceTransfer looks like
0x00

While the intentionwas obviously to send the zero address as the argument, it is best to use the address(0)approach as it is easier for devs and auditors to be certain it is the zero address.
Recommendation: Do the following change in the arguments list of the executeAllowanceTransfer call
- 0x00,
+ address(0),

Parcel: Solved in PR 40.
Cantina Security: Verified.
3.5.4 Function _onlyOnboarded() not used everywhere
Severity: Informational
Context: PayrollManager.sol#L139-L244, ApproverManager.sol#L192-L194
Description: The function executePayroll() has an explicit check for approverCount != 0, while mostother functions use _onlyOnboarded(). Using _onlyOnboarded() everywhere makes the code more con-sistent and easier to maintain.
function executePayroll(...) ... {

// check if safe is onboarded
require(orgs[safeAddress].approverCount != 0, "CS009");
...

}
function _onlyOnboarded(address _safeAddress) internal view {

require(orgs[_safeAddress].approverCount != 0, "CS009");
}

Recommendation: Change executePayroll() to also use _onlyOnboarded().
Parcel: Solved in PR 39. The _onlyOnboarded modifier has been removed since separate contracts areused for each gnosis safe.
Cantina Security: Verified.

21

https://github.com/axic/eth2-deposit-contract/blob/master/deposit_contract.sol#L101
https://github.com/axic/eth2-deposit-contract/blob/master/deposit_contract.sol#L101
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L268
https://github.com/ParcelHQ/parcel-payroll/pull/40
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L139-L244
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L192-L194
https://github.com/ParcelHQ/parcel-payroll/pull/39

3.5.5 Enforce minimum number of approvers
Severity: Informational
Context: ApproverManager.sol#L132-L141
Description: The current minimum number of approvers is 1 and is determined by changeThreshold().Some safe owners might want to enforce a higher minimum to prevent the accidental removal of ap-provers.
function changeThreshold(uint128 threshold) public whenNotPaused {

...
// There has to be at least one Safe Approver.
require(threshold >= 1, "CS015");
...

}

Recommendation: In the onboard() function, add a parameter that defines the minimum number ofapprovers.
Parcel: It’s good to have a feature, but adds one more setting to be managed by DAO operators. I thinkit’s too much complexity for users with very little upside. Probably we can add this in a future version.
Cantina Security: Acknowledged.
3.5.6 Use the delete keyword instead of assigning default values
Severity: Informational
Context: ApproverManager.sol#L123
Description: There is no need to assign default values to storage slots that you want to clear, as there isthe delete keyword for this. You use it in some places but not everywhere - use it everywhere for this usecase.
Recommendation:
- orgs[msg.sender].approvers[oldApprover] = address(0);
+ delete orgs[msg.sender].approvers[oldApprover];

Parcel: Solved in PR 40.
Cantina Security: Verified.
3.5.7 Events parameters order is not consistent
Severity: Informational
Context: ApproverManager.sol#L16
Description: The RemovedApprover & ChangedThreshold events in ApproverManager have the safeAddressparameter as the second parameter in the event and also are omitting the indexed keyword. This isinconsistent with other events in the codebase.
Recommendation: Move the safeAddress parameter to be the first one in the RemovedApprover &
ChangedThreshold events and also add the indexed keyword to it.
Parcel: The events are now modified to emit only the added/removed approver address only.
Cantina Security: Verified.

22

https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L132-L141
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L123
https://github.com/ParcelHQ/parcel-payroll/pull/40
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L16

3.5.8 Increase disallowlist for approvers
Severity: Informational
Context: Organizer.sol#L37-L87
Description: The function onboard() checks that the approver isn't one of the disallowed addresses. Thislist could be expanded with the following address to prevent mistakes and to maximize seperation ofduties:

• owner

• msg.sender (e.g. the gnosis safe)
function onboard(...) ... {

...
require(

approver != address(0) && // approver address cannot be null
approver != SENTINEL_ADDRESS && // approver address cannot be SENTINEL.
approver != address(this) && // approver address cannot be same as contract.
...);

...
}

Recommendation: Consider expanding the list of disallowed addresses in onboard(). This also has to beupdated in addApproverWithThreshold() and swapApprover().
Parcel: Solved in PR 52.
Cantina Security: Verified.
3.5.9 Use a more recent Solidity version
Severity: Informational
Context: Organizer.sol#L12
Description: The compiler version used 0.8.9 is a bit old (current version is 0.8.19). This version wasreleased more than a year ago and there have been four applicable bug fixes to this version since then.While it seems that those bugs don't apply to the Parcel project, it is advised to update the compiler to anewer version.
Recommendation: Upgrade the codebase to a more recent compiler version.
Parcel: We have locked the Pragma to 0.18.17 in PR 39.
Cantina Security: Verified.
3.5.10 Emit threshold event on onboard

Severity: Informational
Context: Organizer.sol#L57
Description: In onboard you set the initial threshold of approvals required for an organisation but thereis no event emitted, even though you emit one for each approved added.
Recommendation: Emit the ChangedThreshold event on setting the approvalsRequired in onboard.
Parcel: Solved in PR 39 via event OrgSetup().
Cantina Security: Verified.

23

https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L37-L87
https://github.com/ParcelHQ/parcel-payroll/pull/52
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L12
https://github.com/ethereum/solidity/releases/tag/v0.8.9
https://docs.soliditylang.org/en/v0.8.17/bugs.html
https://github.com/ParcelHQ/parcel-payroll/pull/39
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L57
https://github.com/ParcelHQ/parcel-payroll/pull/39

3.5.11 Bundle arrays in executePayroll()

Severity: Informational
Context: PayrollManager.sol#L139-L244
Description: The function executePayroll() has several array parameters. This requires several lengthchecks to sanitize the input. The arrays could bebundled in a struct of arrays. This improves the readabilityof the rest of the code.
function executePayroll(

address safeAddress,
address[] memory to,
address[] memory tokenAddress,
uint128[] memory amount,
uint64[] memory payoutNonce,
bytes32[][][] memory proof,
bytes32[] memory roots,
bytes[] memory signatures,
address[] memory paymentTokens,
uint96[] memory payoutAmounts) ... {

}

Recommendation: Consider bundling related arrays in an array of structs. This could be the followingbundles:
• to, tokenAddress, amount, payoutNonce
• proof, roots, signatures
• paymentTokens, payoutAmounts

Parcel: This change will increase readability, but we intend to proceed with the same pattern for now. Wecould implement this in a future release.
Cantina Security: Verified.
3.5.12 Simplify check in removeApprover()

Severity: Informational
Context: ApproverManager.sol#L59-L84
Description: The function removeApprover() has a check the make sure the approverCount won't bebelow threshold. This is slightly difficult to read and can be simplified.
function removeApprover(...) ... {

...
require(orgs[msg.sender].approverCount - 1 >= threshold, "CS016");
...
orgs[msg.sender].approverCount--;
...

}

Recommendation: Consider changing the code to:
function removeApprover(...) ... {

...
- require(orgs[msg.sender].approverCount - 1 >= threshold, "CS016");

...
orgs[msg.sender].approverCount--;

+ require(orgs[msg.sender].approverCount >= threshold, "CS016");
...

}

Parcel: Simplified in PR 50.
Cantina Security: Verified.

24

https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L139-L244
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L59-L84
https://github.com/ParcelHQ/parcel-payroll/pull/50

3.5.13 Consider removing linked list
Severity: Informational
Context: Organizer.sol#L12
Description: The approvers are stored using a linked list. This has the following disadvantages:

• the functions removeApprover() and swapApprover() require supplying a previous approver;
• if the linked list gets to large out of gas errors could occur, see issue "Potential out of gas in whileloops";
• the linked list logic is relatively complicated and difficult to verify.

The advantages are limited:
• it allows getApprovers(), however, because it is intended to be used via the Parcels off-chain payrollproduct, this can also be done offchain (or for example via TheGraph);
• it allows deleting the mapping in offboard(). However offboard() has limited use, see also issue"offboard() clears all nonces" and "Use separate contracts for each gnosis safe";
• it has been added to help verify the recovered signatures of root hashes and assumes the approverslist is sorted, however:

– swapApprover() will distort the sort order;
– offchain sorting of roots[] and signatures[] on signer address is sufficient for executePay-
roll() and validateSignatures() to function.

Recommendation: Consider removing the linked list to simplify the code.
For example the functions addApproverWithThreshold() and removeApprover() could be simplified to thefollowing:
function addApproverWithThreshold(address approver,uint128 threshold) external whenNotPaused {

_onlyOnboarded(msg.sender);
require(approver != address(0) && approver != address(this),"CS003");
require(orgs[msg.sender].approvers[approver] == false, "CS002"); // No duplicate approvers allowed.
orgs[msg.sender].approvers[approver] = true;
orgs[msg.sender].approverCount++;
emit ApproverAdded(msg.sender, approver);
if (threshold != orgs[msg.sender].approvalsRequired)

changeThreshold(threshold);
}
function removeApprover(address approver,uint128 threshold) external whenNotPaused {

_onlyOnboarded(msg.sender);
require(orgs[msg.sender].approverCount - 1 >= threshold, "CS016");
require(approver != address(0) ,"CS003");
require(orgs[msg.sender].approvers[approver] == true, "..."); // Only remove if present
delete orgs[msg.sender].approvers[approver];
orgs[msg.sender].approverCount--;
emit RemovedApprover(approver, msg.sender);
if (threshold != orgs[msg.sender].approvalsRequired)

changeThreshold(threshold);
}

Parcel: The current setup is allowing us to get a list of approvers directly from the contract whereas ifwe go the graph way, we will have to consider all the add, remove and swap events on the proxy contract.Hence if there is no security risk involved, we would like to keep this approvers list as a linked list for now.
Cantina Security: Acknowledged.

25

https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L12

3.5.14 Naming convention for interfaces is not followed
Severity: Informational
Context: AllowanceModule.sol#L4
Description: The AllowanceModule interface does not follow the standard naming convention for Solidityinterfaces, which begins with an I prefix. This inconsistency can make it harder for developers to under-stand the purpose and usage of the contract.
Recommendation: It is recommended to prefix the AllowanceModule interface with I:
+interface IAllowanceModule {
-interface AllowanceModule {

function executeAllowanceTransfer(
. . .

) external;
}

Parcel: Solved in PR 40.
Cantina Security: Verified.
3.5.15 Function ordering does not follow the Solidity style guide
Severity: Informational
Context: PayrollManager.sol#L14
Description: The recommended order of functions in Solidity, as outlined in the Solidity style guide, is asfollows: constructor(), receive(), fallback(), external, public, internal and private. However, thisordering isn't enforced in the PayrollManager.sol contract.
Recommendation: It is recommended to follow the recommended order of functions in Solidity, as out-lined in the Solidity style guide.
Parcel: Solved in PR 51.
Cantina Security: Verified.
3.5.16 offboard() doesn't delete everything
Severity: Informational
Context: Organizer.sol#L93-L106
Description: The function offboard() doesn't remove orgs[msg.sender].approvers[SENTINEL_AD-
DRESS];. It doesn't pose a security risk though as in onboard() this slot will be overwritten anyway withthe current implementation.
function offboard() external {

...
address currentApprover = orgs[msg.sender].approvers[SENTINEL_ADDRESS];
while (currentApprover != SENTINEL_ADDRESS) {

address nextApprover = orgs[msg.sender].approvers[currentApprover];
delete orgs[msg.sender].approvers[currentApprover];
currentApprover = nextApprover;

}
...

}

Recommendation: Depending on the solution chosen for issue "offboard() clears all nonces", add thefollowing:
delete orgs[msg.sender].approvers[SENTINEL_ADDRESS];

Parcel: Offboarding has been removed as we are moving to Proxy architecture.
Cantina Security: Verified.

26

https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/interfaces/AllowanceModule.sol#L4
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/interfaces/AllowanceModule.sol#L4
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/interfaces/AllowanceModule.sol#L4
https://github.com/ParcelHQ/parcel-payroll/pull/40
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L14
https://docs.soliditylang.org/en/v0.8.17/style-guide.html#order-of-functions
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L14
https://docs.soliditylang.org/en/v0.8.17/style-guide.html#order-of-functions
https://github.com/ParcelHQ/parcel-payroll/pull/51
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L93-L106

3.5.17 Inheritance is possibly not needed in the protocol
Severity: Informational
Context: ApproverManager.sol#L8
Description: The inheritance tree of the protocol is a strange one - both ApproverManager and Payroll-
Manager inherit from Storage and Pausablewhile Organizer inherits from both ApproverManager and Pay-
rollManager.
Also, some contracts are declared abstract while others that should also not be deployed separately arenot. As the logic in all contracts is tightly coupled anyway, implementing it in separate contracts seemslike not a great fit, so using one big smart contract should be easier to grasp, audit, and reason about inthe protocol.
Recommendation: Merge all contracts into one bigger contract since the logic is tightly coupled.
Parcel: Solved in PR 60.
Cantina Security: Verified.
3.5.18 No need to use an assembly block to get the chain ID
Severity: Informational
Context: Signature.sol#L20
Description: Currently the getChainId method in Signature uses an assembly block to get the currentchain id. This is not needed since there is a global variable for this already.
Recommendation: Remove the getChainId function and just use block.chainid instead.
Parcel: Solved in PR 54.
Cantina Security: Verified.
3.5.19 Redundant code, logic, checks and misnamed variables
Severity: Informational
Context: PayrollManager.sol#L69, ApproverManager.sol#L138, ApproverManager.sol#L11,ApproverManager.sol#L176, ApproverManager.sol#L188, ApproverManager.sol#L10, ApproverMan-ager.sol#L158, Organizer.sol#L48, Organizer.sol#L56, Organizer.sol#L69, Organizer.sol#L22
Description: There are redundant checks, code, and misnamed variables throughout the codebase. Ei-ther remove or improve all of them.
Recommendation:

• The orgs[safeAddress].packedPayoutNonces.length == 0 check in PayrollMan-
ager::getPayoutNonce is not needed since the other check in the if (orgs[safeAddress].packedPayoutNonces.length
<= slotIndex) contains it anyway, so you can remove it.

• Change require(threshold >= 1, "CS015"); to require(threshold != 0, "CS015"); in Approver-
Manager:: changeThreshold for simplicity.

• There is no need for the _onlyOnboarded(_safeAddress); check in either getApproverCount or get-
Threshold in ApproverManager as they are only externally called and will just return 0 if the _safeAd-
dress is not onboarded, so checks can be removed.

• The ApproverRemoved event in ApproverManager is not used and can be removed.
• Rename the operator parameter in the ApproverAdded event in ApproverManager to approver fornaming consistency.
• Rename the currentOp variable in ApproverManager:: getApprovers to currentApprover for nam-ing consistency.
• There is no need for the require(_approvers.length > 0, "CS000"); check in Organizer::onboardas the other require statements contain it already, so it can be removed.

27

https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L8
https://github.com/ParcelHQ/parcel-payroll/pull/60
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/signature/Signature.sol#L20
https://github.com/ParcelHQ/parcel-payroll/pull/54
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L69
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L138
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L11
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L176
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L188
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L10
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L158
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L158
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L48
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L56
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L69
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L22

• No need to do orgs[safeAddress].approverCount = 0; in Organizer::onboard since this value isalready enforced to be 0 from the first require statement in the method, you can remove the
orgs[safeAddress].approverCount = 0; code.

• The currentapprover != approver, part of the require statement in the loop in Orga-
nizer::onboard is redundant and can be removed since it is checked by the No duplicate
approvers allowed. check below.

• Rename the orgAddress parameter of the OrgOffboarded event in Organizer to safeAddress for nam-ing consistency.
Parcel: Solved in various commits.
Cantina Security: Verified.
3.5.20 Typos, redundancies, errors and missing data in comments & NatSpec docs
Severity: Informational
Context: Signature.sol#L37, Signature.sol#L25, PayrollManager.sol#L15, ApproverManager.sol#L135,Organizer.sol#L14-L21, ApproverManager.sol#L87, Organizer.sol#L8
Description: Many comments and NatSpec docs have errors or redundancies in them and should beimproved.
Recommendation:

• The NatSpec of validatePayrollTxHashes is missing @return parameter.
• Typo in the NatSpec of getDomainSeparator - seperator should be separator

• Comment on // Payroll Functions in PayrollManager should be after the using statement or canbe removed
• Change the // Validate that threshold is smaller than number of approvers. comment to //
Validate that threshold is less than or equal to the number of approvers.

• Remove comments on events in Organizer that just duplicate the comment name
• The /// This can only be done via a Multisig transaction. part of the ApproverMan-
ager::swapApprover NatSpec is not 100% correct as it is not enforced that the caller of the onboardfunction is indeed a multisig - it can be an EOA. Update or remove this part of the NatSpec

• Typo in the NatSpec of Organizer: Orgss should be Orgs

• Replace all the occurrences of ETH/Ether with Native Token, since in the docs it's mentioned that:
The contracts are written in Solidity version 0.8.9 and are compatible to run on all
EVM-based chains

Parcel: Those issues are fixed in several commits.
Cantina Security: Verified.

28

https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/signature/Signature.sol#L37
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/signature/Signature.sol#L25
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/PayrollManager.sol#L15
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L135
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L14-L21
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/payroll/ApproverManager.sol#L87
https://github.com/ParcelHQ/parcel-payroll/blob/3fa78dfbc36a5714bf4d8d3cac12dd0f4dbfce92/contracts/Organizer.sol#L8

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	High Risk
	executePayroll() can be frontrun with split transactions
	offboard() clears all nonces
	More tokens can be retrieved from a safe via frontrunning
	safeAddress not included in signatures
	Order of execTransactionFromGnosis() and initialBalances() is reversed

	Medium Risk
	deadline to limit the validity of a transaction
	Nonce invalidation functionality is missing
	Several issues with strict after balances check in executePayroll()
	ETH and tokens can get stuck
	Use seperate contracts for each gnosis safe
	Token retrieval not linked to signed transactions

	Low Risk
	ETH recipients can block receiving ETH
	Prefer two-step ownership transfer over a single-step pattern
	Address restrictions in AllowanceModule
	Array packedPayoutNonces can cause out of gas errors
	Potential out of gas in while loops
	Domain separator is missing security fields

	Gas Optimization
	Unnecessary conversions from bytes to string in the Signature contract
	Optimize byte operation in packPayoutNonce() and getPayoutNonce()
	Reduce the number of calls to MerkleProof.verify()
	Expensive operation can be optimised outside of for-loop
	Caching variables can result in gas savings
	Multiple payments to same recipient can be combined
	Move code outside if and else in executePayroll()
	Redundant event parameters in event OrgOnboarded
	Extracting a storage pointer can result in a gas optimisation
	Never updated variable can be immutable
	Use Solidity's custom errors to save gas
	Use calldata instead of memory for external function array parameters
	Caching the domainSeparator will optimise gas

	Informational
	Function name removeApprover() doesn't show all functionality
	Synchronisation of signers
	Use address(0) for the zero address
	Function _onlyOnboarded() not used everywhere
	Enforce minimum number of approvers
	Use the delete keyword instead of assigning default values
	Events parameters order is not consistent
	Increase disallowlist for approvers
	Use a more recent Solidity version
	Emit threshold event on onboard
	Bundle arrays in executePayroll()
	Simplify check in removeApprover()
	Consider removing linked list
	Naming convention for interfaces is not followed
	Function ordering does not follow the Solidity style guide
	offboard() doesn't delete everything
	Inheritance is possibly not needed in the protocol
	No need to use an assembly block to get the chain ID
	Redundant code, logic, checks and misnamed variables
	Typos, redundancies, errors and missing data in comments & NatSpec docs

